
S

K
a

b

R
c

d

a

A
R
R
1
A
A

K
P
C
P
R
C
G

1

e
a
w
t
s
d
i
v
p
d
g
m
t
t
c
w

(
(
(

0
d

Talanta 90 (2012) 46– 50

Contents lists available at SciVerse ScienceDirect

Talanta

jo u r n al hom epage: www.elsev ier .com/ locate / ta lanta

tatistical  analysis  of  wines  using  a  robust  compositional  biplot

.  Hrona,∗, M.  Jelínkováb, P.  Filzmoserc, R.  Kreuzigerd, P.  Bednářb,  P.  Bartákb
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a  b  s  t  r  a  c  t

Eight  phenolic  acids  (vanillic,  gentisic,  protocatechuic,  syringic,  gallic,  coumaric,  ferulic  and  caffeic)
were  quantitatively  determined  in  30 commercially  available  wines  from  South  Moravia  by  gas
chromatography–mass  spectrometry.  Raw  (untransformed)  and  centered  log-ratio  transformed  data
were  evaluated  by classical  and  robust  version  of  principal  component  analysis  (PCA).  A robust  composi-
tional  biplot  of  the  centered  log-ratio  transformed  data  gives  the  best  resolution  of  particular  categories
of  wines.  Vanillic,  syringic  and  gallic  acids  were  identified  as presumed  markers  occurring  in relatively
higher  concentrations  in  red  wines.  Gentisic  and  caffeic  acid were  tentatively  suggested  as  prospective
eywords:
henolic acids
ompositional data
rincipal  component analysis
obust  compositional biplot
entered log-ratio transformation

technological  markers,  reflecting  presumably  some  kinds  of  technological  aspects  of  wine  making.
© 2011 Elsevier B.V. All rights reserved.
as chromatography–mass spectrometry

. Introduction

When quantifying chemical data, the results are frequently
xpressed in concentrations, like in mg  L−1, or directly in percent-
ges to see the proportions of various chemical compounds on the
hole solid/sample. This implies that not the absolute values, but

he ratios are of interest. Such data (called in the following compo-
itional data or only compositions for short) are in fact quantitative
escriptions of the compounds (parts) of some whole, convey-

ng exclusively relative information. From a mathematical point of
iew, the compositional data have another sample space, the sim-
lex, which is in fact only a subset of the Euclidean real space, the
omain of the standard multivariate observations. This induces sin-
ularity of compositions that make the use of standard statistical
ethods not possible. Besides a different sample space, composi-

ional data also have a specific geometrical behavior, corresponding

o the so-called relative scale. In terms of this relative scale, 5% is
onsidered half of 10%, while 45% forms a fraction of 0.9 of 50%. If
e would treat these numbers as absolute values, the difference

∗ Corresponding author. Tel.: +420 585634605, fax: +420 585634002.
E-mail  addresses: hronk@seznam.cz (K. Hron), korhonovam@seznam.cz

M.  Jelínková), P.Filzmoser@tuwien.ac.at (P. Filzmoser), kreuzi9f@seznam.cz
R.  Kreuziger), bednarp@prfnw.upol.cz (P. Bednář),  petr.bartak@seznam.cz
P.  Barták).

039-9140/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2011.12.060
between 5% and 10% appears to be the same as that between 45%
and 50%, but obviously this result does not account for the real
information behind the data. Statistical methods directly applied
to the original data, where the information contained is absolute
and not relative, can lead to completely useless results. This was
already seen more than 100 years ago in the context of corre-
lation analysis for this kind of multivariate observations [1], and
recent work confirms the problems and provides new approaches
[2,3].

The new conceptual approach to deal with compositional data
was introduced in the early 1980s, when John Aitchison proposed
the use of log-ratios [4]. It is based on the idea that the simplex as
sample space of compositions induces a natural geometry (nowa-
days usually called the Aitchison geometry [5]) that is coherent
with the intuitive concept of difference associated to the rela-
tive scale of compositions. A statistical approach has to account
for the natural scale of the data, and this is possible for composi-
tional data using the log-ratio approach [6]. It includes a family of
log-ratio transformations from the simplex to the real space with
the standard Euclidean geometry, namely the additive, centered
and isometric log-ratio transformation [4,7]. These transformations
allow for the use of standard statistical methods for the transformed

data, although with some limitations or modifications [2,4,6,8–10].
Nowadays only the latter two  mentioned log-ratio transforma-
tions seem to be fully reasonable according to adequate theoretical
properties.
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In many practical approaches, compositional data are simply
og-transformed in order to bring the distributions of the single
ariables closer to symmetry. However, this transformation does
ot move the compositions out from the simplex, but in fact it
nly converts the natural constraint of the data to a more com-
licated one. In addition, the log-transformation does not preserve
he singularity of compositions, what in practice destroys the cor-
elation structure of the transformed data and makes a meaningful
nterpretation impossible.

A  further problem in practical data sets is the presence of out-
ying observations (outliers), i.e. observations that do not follow
he main data structure. Outliers can have a severe influence to
esults of the standard statistical methods, and thus lead to wrong
onclusions. The main reason is that both the arithmetic mean and
he sample covariance matrix, that occur as estimators of location
nd covariance in most multivariate statistical procedures, are very
ensitive to deviations from the main data structure. This holds
lso for the well known principal component analysis (PCA), used
or dimension reduction of the multivariate observations. PCA tries
o explain as much of the overall variability as possible with the
rst few principal components. Outliers can artificially increase
his variability, thus change the directions of principal components
nd, consequently, also values of the resulting loadings and scores.

 solution is to downweight the influence of outlying observa-
ions. In case of PCA, robustness against outliers can be achieved by
eplacing the arithmetic mean and the sample covariance matrix
y their robust counterparts. A frequently used robust estimator of

ocation and covariance is the minimum covariance determinant
MCD) estimator, but also several other proposals were made in
he literature [11]. Finally, note that although PCA by definition

aximizes data variance, the main variance cannot be associated
ith the studied effect (like class membership). PCA thus can be
sed for exploration, compression and visualization of data trends,
ut it cannot be used for classification purposes.

Results of PCA are often presented in a biplot [12]. A biplot is
 planar graph, where both loadings (representing information of
ariables) and scores (representing information of observations)
re displayed. In order to distinguish between both sources of infor-
ation, the loadings are represented by arrows from the origin and

he scores by points in the plot. The biplot is usually constructed on
he basis of the first two principal components, forming a rank-two
pproximation of the multivariate data, see, e.g., [13,14] for details.

 robust biplot displays loadings and scores from a robust PCA.
The  aim of the study is to compare different statistical pro-

edures for the evaluation of eight phenolic acids contained in
oravian wines. Phenolic acids (and other phenolic compounds)

elong to a group of important secondary plant metabolites widely
pread throughout the plant kingdom [15]. Phenolic acids are
ocated in several parts of grape berries, primarily in the skin. Their
ontent in wines depends on grape variety, maturity degree, tech-
ology of wine making process and chemical reactions occurring
uring wine fermentation and ageing [16–18].

. Robust compositional biplot

PCA as a statistical method and as a basis for constructing
he biplot is designed for data following the standard Euclidean
eometry. Thus, applying the method directly to compositions usu-
lly gives misleading results [9]. On the other hand, the data can
e transformed with the centered log-ratio (clr) transformation,
efined for a D-part composition x = [x1, . . .,  xD] as
=  [y1, y2, . . . , yD] =

⎡
⎣ln

x1

D

√∏D
i=1xi

, . . . , ln
xD

D

√∏D
i=1xi

⎤
⎦ .
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Besides the theoretical correctness of PCA for clr transformed data,
also an easier interpretation of the resulting PCA loadings and
scores is usually possible [19].

Since the denominator of the log-ratios in the clr transforma-
tion is the geometric mean of the transformed composition, the
origin of the biplot corresponds to the geometric mean of the data
set. The PCA scores have an analogous meaning as in the standard
case, i.e. they picture the multivariate data structure of composi-
tions. Due to the clr transformation, the data structure is already
represented in the usual sense of Euclidean distances. On the other
hand, the interpretation of loadings is different. The squared dis-
tance between two vertices (vectors) approximates the variance
of the log-ratios of the compositional parts. If the vertices, corre-
sponding to yi and yj, i, j = 1, . . .,  D, i /=  j nearly coincide, the variance
of the log-ratio of xi and xj, var(ln (xi/xj)), is nearly zero and hence
the ratio xi/xj is almost a constant.

The advantages of using the compositional biplot are reflected
in the literature by many applications, like from the fields of geo-
chemistry and analytical chemistry [2,3,9,20,21]. Moreover, in Ref.
[3] a detailed description is provided, how to apply the classical
compositional biplot to a concrete chemical data set.

Since  classical compositional biplots are sensitive to outliers, for
many practical situations a robustification is necessary. This step is
not straightforward because the clr transformation results in sin-
gular data (the sum of y1, . . .,  yD equals zero), and robust estimators
of location and covariance cannot cope with data singularity. This
problem can be overcome with isometric log-ratio (ilr) transforma-
tions that form the family of mutually orthogonal transformations
in the (D − 1)-dimensional Euclidean real space. Taking one of them
[7], it moves the composition x to

z = [z1, z2, . . . , zD−1], zi =
√

i

i + 1
ln

i

√∏i
j=1xj

xi+1
for

i  = 1, . . . , D − 1. (1)

Moreover,  there exist linear transformations between various ilr
transformations and the clr transformation [7]. Thus, now one can
compute the robust estimators and, consequently, the robust PCA
loadings and scores. Unfortunately, the new variables zi are not
straightforward to interpret in sense of the compositional biplot.
Thus, we use the linear relationship between the ilr and clr trans-
formations and back-transform the loadings and scores to the clr
space. Finally, they can be used to construct the robust composi-
tional biplot with the interpretation as described above.

3.  Materials and methods

3.1.  Chemicals and materials

Vanillic,  syringic, caffeic, p-coumaric, ferulic, 4-
cyclohexylbutanoic acid, bis(trimethylsilyl)-trifluoracetamid
(BSTFA), methanol and pyridine of p.a. purity were purchased
from Fluka (Buchs, Switzerland). Protocatechuic acid of p.a. purity
was purchased from Dr. Theodor Schuschardt (Munich, Germany).
Gallic acid, ethyl acetate, hexane, hydrochloric acid and sodium
chloride of p.a. purity were from Lachema (Brno, Czech Republic).
Commercially available wines of Czech production were purchased
in local supermarkets and wine shops.

3.2. Sample preparation
Five  mililliter of wine sample was  adjusted by 100 �L of 2 M HCl
to pH 2 then 1 mL  of saturated solution of NaCl, 100 �L of methano-
lic stock solution of an internal standard (4-cyclohexylbutanoic
acid,  50 mg  L−1, final concentration in the sample 1 mg  L−1) and
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Table 1
Representation of phenolic acids in Czech wine samples (mg  L−1).

Wine samples Phenolic acids

No. Vanilic Gentisic Protocatechuic Syringic Gallic Coumaric Ferulic Caffeic
(1)  (2) (3) (4) (5) (6) (7) (8)

White 1 0.853 6.409 12.499 0.575 6.234 3.578 0.933 5.740
2  0.524 4.401 5.427 0.296 1.803 2.902 0.563 4.573
3 0.099  6.565 8.099 0.352 3.693 4.875 0.727 6.965
4 0.535  2.111 8.151 0.225 2.314 1.053 0.259 4.434
5  0.413 2.125 5.603 0.189 8.039 2.473 0.905 6.662
6  0.281 7.992 6.613 0.141 2.272 27.905 1.330 2.861
7  0.412 3.589 8.403 0.230 4.445 2.810 0.671 2.015
8  0.734 7.688 5.352 0.539 41.237 1.679 1.418 10.353
9 1.911  14.489 16.057 1.256 21.223 9.350 3.725 34.206

Rosé 10  0.972 2.970 5.628 0.832 4.65 1.9036 0.558 3.220

Red 11  10.734 4.192 23.347 9.900 109.666 6.019 0.544 13.337
12  11.217 5.991 25.484 10.240 95.896 14.304 1.001 26.742
13 4.608  2.915 35.097 3.473 72.259 7.496 0.757 14.032
14  6.869 4.832 20.662 7.049 92.833 7.529 0.579 13.268
15  2.156 3.975 4.313 2.954 1.657 1.965 0.301 6.043
16  17.364 2.985 4.110 23.845 16.562 16.011 1.001 12.275
17  8.510 1.537 18.977 12.033 88.096 6.685 0.933 52.378
18 6.163  2.051 9.362 6.114 53.155 4.892 0.350 1.552
19  4.614 3.978 10.778 4.590 60.919 5.139 0.286 4.605
20  3.831 2.043 7.219 5.792 68.390 2.281 0.305 7.045
21  4.528 4.264 22.749 5.992 51.992 10.880 0.328 14.758
22  3.836 1.325 5.457 6.654 66.746 2.929 0.292 8.180
23  5.486 10.034 15.856 5.526 69.166 10.669 0.505 16.980
24  4.746 8.429 3.053 5.199 14.415 16.843 1.658 43.295
25 6.044  1.863 8.508 9.940 57.440 4.028 0.310 9.235
26  6.731 2.972 7.047 8.316 61.711 1.807 0.700 9.511
27 8.040  2.950 1.555 12.440 47.864 10.472 0.563 5.430
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29  5.484 4.965 5.666 

30  5.187 1.822 10.123 

 mL  of ethylacetate were added. Each sample was extracted in a
0 mL  centrifugal plastic tube and an incurred emulsion was  sep-
rated out by centrifuge (30 s, 3000 rpm). The organic phase was
emoved into glass vial, evaporated to dryness in thermo block
35 ◦C) in a steam of nitrogen. Afterwards, 100 �L of pyridine and
00 �L of BSTFA were added, sealed vial was heated up to 70 ◦C
30 min). Cooled samples were filled in 1 mL  with hexane and ana-
yzed by GC–MS.

.3.  GC/MS analyses

Analyses  of wine samples were performed on a HP 6890 Series
C system with an Agilent 5973 N Mass Selective Detector (Agi-

ent, Palo Alto, CA, USA), equipped with NIST mass spectra library.
 ZB-5MS capillary column (5% phenyl, 95% dimethyl polysilox-
ne) (30 m × 0.25 mm i.d., 0.25 �m film thickness) was used. The GC
emperature was  programmed as follows: start temperature 50◦C
2 min  hold), increase to 300 ◦C at 10 ◦C min−1, hold for 10 min;
ulsed splitless injection (1 �L, 140 kPa, 24 s) was used. The car-
ier gas helium (99.998%; SIAD, Bergamo, Italy) was  maintained at

 constant flow of 0.9 mL  min−1. MS  scans were recorded within
he range 29–520 m/z using EI mode (energy 70 eV). Phenolic acids
ere identified by comparison of retention times with those of par-

icular standards and by comparison of mass spectra with those
rom MS  library NIST 08. Phenolic acids were quantified by an
nternal standard method.

.4.  Data processing
All  the calculations were performed using the statistical soft-
are R [22]. R is nowadays one of the most used tools for

tatistical computing and provides a huge variety of functions from
asic descriptive statistics to advanced statistical methods and
8.413 38.448 3.607 0.409 7.617
4.293 22.586 11.780 1.806 25.474
4.434 68.869 15.590 1.649 63.768

graphical  procedures. Specialized functions are associated to
libraries. Two libraries are available for compositional data anal-
ysis: “compositions” and “robCompositions”. The latter contains a
function to obtain robust PCA for constructing the robust compo-
sitional biplot in the clr space as described above.

4. Results and discussion

Hydroxybenzoic acids as vanillic acid (1), gentisic acid (2), pro-
tocatechuic acid (3), syringic acid (4), gallic acid (5), and hydroxy-
cinnamic acids as coumaric acid (6), ferulic acid (7), caffeic acid (8)
were identified and quantitatively determined in 30 wine samples
by the GC–MS technique (Table 1). Although the sum of the com-
positional parts for each wine is rather small (and far away from
100%), the data are of compositional nature, because an increase
of one part could automatically imply a decrease of other parts.
Therefore, only the ratio between the parts include the relevant
information, but not the raw numbers.

In the following we  demonstrate the results arising from the two
different approaches: analyzing the raw data set, and treating the
data as compositional data set. In both cases we use a classical and
a robust approach for constructing the biplot. Due  to the nature of
the data set, we would expect a grouping of the white and of the
red wines. The rosé wine (no. 8) could possibly form an own  group.

Fig. 1 shows the biplots for the raw data set where the fact of
dealing with compositional data is ignored. Data groups are visible
in the classical (left) as well as in the robust (right) biplot. However,
these groups do not correspond to our suspicion: a red wine (no. 15)
falls into the cluster of white wines, a white wine (no. 6) is far away

from the white wine cluster but closer to the red wine group, and
the rosé wine (no. 10) is in the center of the white wine group. An
apparent outlier seems to be white wine no. 9. Robustness leads to
a slightly different configuration of the observations and variables
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Fig. 1. Classical (left) and rob

n the biplot, but it does not reveal the potential groups in the data.
t is of course possible that either the presumed grouping structure
s not present, or that it is only visible in higher-order principal
omponents.

Fig. 2, on the other hand, confirms what has been expected.
n the classical compositional biplot (left), the white wine sam-
les form a clear group, and the rosé wine sample 8 is located in
etween the white and red wine sample. Now also the real relations
etween the compounds are identifiable. There are two groups of
ompositional parts (2, 6, 7, 8 and 1, 4) with mutually quite sta-
le ratios, and two other compounds (3, 5) with different behavior.
he robust compositional biplot (right) gives less weight to outly-
ng samples, and the resulting plot corresponds even more to our
ntuition, with two data groups consisting of white and red wines,
espectively, and the rosé wine in between. A natural exception
orms the white wine sample no. 8. The reason is quite nicely visi-
le by looking at Table 1. Comparing mean log-ratios between the
riginal compounds (elements of the so-called variation array, see
ef. [4] for details) of the white and red wine groups, respectively,
ith the corresponding log-ratios of sample 8 reveals that in some

spects this sample behaves as a red wine rather than a white one.

or example, the mean log-ratio between caffeic and gallic acids
quals 0, 23 for the white wine group (without 8) and −1, 30 for
he red wine group, while the same log-ratio for sample 8 equals −1,
8. Consequently, the ratio between caffeic and gallic acids in 8 is

Fig. 2. Classical (left) and robust (right) compos
ight) biplot for the raw data.

more than 5 times less than the corresponding average ratio in the
white wine group. An analogous behavior is visible also for some of
the other (log-)ratios between coumpounds, like between proto-
catechuic and gallic acids (even approximately a 15 times smaller
ratio than the white wine average) or for protocatechuic and caf-
feic acids, respectively. Conversely, looking at the corresponding
log-ratios helps to explain why red wine no. 15 tends to enter the
white wine group. The main responsible (log-) ratios seem again
to be connected with the gallic acid – its ratios to gentisic (more
than 40 times smaller ratio than the red wine average), protocat-
echuic and ferulic acids, respectively, indicate a clear deviation of
15 to the white wines behavior. However, these outliers are still
associated with the correct groups in Fig. 2 (right), although at the
boundary on these groups. Finally, the role of white wine no. 9
has changed from the previous case, where the statistical analysis
of raw compositional data (where the ratios are informative) was
strongly influenced by absolute values of the compounds. None of
log-ratios in this sample justifies its outlying behavior comparing
to the other samples, in fact, it quite nicely follows the white wine
group properties.

In  this biplot, also the configuration of the variables has a

very intuitive interpretation: two markedly distinguished groups
of phenolic acids (1, 4, 5 and 3, 6, 7) of supposedly opposite behav-
ior are evidently responsible for the resolution of the samples in
the horizontal direction, largely consistent with the resolution of

itional biplot for the clr transformed data.



5 lanta 9

r
(
c
w
s
t
o
s
m
r
w
t
m

g
t
b
a
f
a
l
a
p
f
f
p
(
p
c
a
o
e
t
m
t
a
a

5

w
f
o
b
t
i
w

[
[

[
[

[

[
[

[
[
[
[
[

[

[

0 K. Hron et al. / Ta

ed and white wines. Phenolic acids of both groups, i.e. vanillic
1), syringic (4) and gallic acid (5) as well as protocatechuic (3),
oumaric (6) and ferulic acid (7) are frequently detected in red and
hite wines. However acids from the first group are typically pre-

ented in red wines in much higher concentrations in comparison
o the white wines, while concentrations of the acids from the sec-
nd group are more or less equal in red and white wines. In this
ense, vanillic, syringic and gallic acid could be regarded as the true
arkers of red wines. The results are in good agreement with other

elated studies concerning the determination of phenolic acids in
ines [23]. Note that these three variables also allow for a separa-

ion of white and red wines in Fig. 1, but the resulting grouping is
uch more vague.
In  the robust compositional biplot, two other phenolic acids,

entisic (2) and caffeic (8), are located in orthogonal direction
o the main (horizontal) distribution. Some kind of orthogonal
ehavior of gentisic and gallic acid was observed in a study aimed
t investigating phenolic acids during the fermentation of dif-
erent types of wines [24]. When the concentration of gentisic
cid increases during the fermentation, the concentration of gal-
ic acid goes down and vice versa. In a similar way, the caffeic
cid exhibits an opposite behavior to ferrulic acid and both cou-
les often act somewhat complementary. The findings could be
urther supported considering the general biochemical pathways
or phenolic acid biosynthesis. Gentisic and gallic acids are two
roducts of different synthetic pathways from the same precursor
3-dehydroshikimate). The complementarity could be due to the
reference of one of the possible pathways according to particular
onditions during the fermentation and maturation [25]. Caffeic
nd ferrulic acid is a pair of biosynthetic precursor and product
f enzymatic reaction, and the preference is given by activities of
nzymes in subsequent reactions [26]. Some kind of competition
akes place in both cases, and particular conditions determine the

utual ratio of synthesized phenolic acids in both couples. The con-
ent of gentisic and caffeic acid and their ratio to other phenolic
cids depends not only on the variety of the grapes, but probably
lso on the process of wine making.

. Conclusions

Classical and robust versions of principal component analysis
ere applied on raw (untransformed) and centered log-ratio trans-

ormed data concerning the content of eight phenolic acids in a set
f 30 red, rosé and white Czech wines. The robust compositional

iplot of centered log-ratio transformed data gives the best resolu-
ion of the particular categories of wines, allowing straightforward
nterpretation and explanation. Vanillic, syringic and gallic acids

ere identified as supposed markers of red wines, while gentisic

[

[
[

0 (2012) 46– 50

and  caffeic acids were tentatively suggested as prospective mark-
ers reflecting to some extent also the technological aspect of wine
making.
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